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Abstract. We have studied the elastic stability of an arbitrary equilibrium state of a homo- 
geneous solid when Lagrangian parameters are used. We first introduce the notion of 
subrepresentation (SR) and we show how the passage from one SR to another can be easily 
described by a ‘passage matrix’. The equation determining the ‘strain spinodal’ is then 
obtained in terms of this passage matrix and it is demonstrated that an inflection point on  
the free-energy surface in Lagrangian parameter spaces does not necessarily correspond to 
an elastic instability of the solid. These results are finally applied to the localized soft- 
mode theory, showing the existence of an important harmonic contribution to the strain 
renormalization of the second-order elastic constants, which has been entirely neglected by 
Clapp and subsequent workers. For some alloys, the numerical values prove that this 
harmonic contribution tends to stabilize the lattice but not enough to compensate the 
anharmonic effects, and therefore Clapp’s model is still likely to be valid. 

1. Introduction 

An equilibrium state of a solid (assumed to be without electric or magnetic properties) 
can be thermodynamically described by the temperature T and the Lagrangian strain 
parameters (LSPS) qlj  evaluated from a certain reference configuration, for instance that 
which is established at the temperature T and at zero applied stress. Associated with 
each equilibrium state there is then a pair (vi,, T)  and vice versa. 

All such equilibrium states are not stable (or metastable) states. So their stability 
towards small additional deformations at a fixed temperature T (mechanical stability) 
can be questioned. Of course, the answer to this depends upon the type of additional 
deformations under consideration. Here, we restrict ourselves to homogeneous fluc- 
tuations (elastic stability). Furthermore, the types of configuration of the system to be 
dealt with in this paper are only those corresponding to homogeneous states of the solid. 
It is then possible to consider a geometrical representation in which all the states involved 
are represented by points in a six-dimensional space of LSPS. 

0 Permanent address: Departament d’Estructura i Constituents de la Materia, Facultat de Fisica, Universitat 
de Barcelona, Diagonal 647, 08028 Barcelona (Catalonia), Spain. 
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The purpose of the present article is to establish the equation determining the 
corresponding ‘strain spinodal’ in such space. We show how the peculiarities of the LSPS 
lead to a new equation in which not only the second-order derivatives matrix of the free 
energy but also a ‘passage matrix’ appear. 

The paper is organized as follows. First, in section 2, we reformulate the finite- 
deformation thermodynamic theory of a stressed solid developed by Wallace (1967, 
1970, 1972) in a somewhat more formal way by introducing the notion of sub- 
representation (SR) (of the Helmholtz representation) and suitable matrix notation. The 
elastic stability criteria will then be formulated in section 3, first in a general case and 
next in two particular cases (namely the microscopic case developed by Milstein (1971) 
and the case using the Lagrangian macroscopic description) in order to emphasize the 
difference between them. 

Finally, in the last section (section 4), we reconsider the localized soft-mode theory 
described by Clapp (1973) and further developed by other workers (GuCnin and Gobin 
1982a, b, GuCnin and Clapp 1986, Verlinden and Delaey 1986) to explain the nucleation 
process in thermoelastic martensitic transformations. It is shown that the strain renor- 
malization of the second-order elastic constants (SOECS) and the stability criteria used 
by these researchers are in disagreement with the equations developed in the previous 
sections. These equations are then applied to calculate this renormalization and the 
critical strains for a Bain distortion and a (Oll)[Oil] shear, and the new results are 
compared with those obtained using Clapp’s method. In particular, the influence of 
harmonic terms on the elastic stability are accounted for. Numerical values are presented 
for some alloys, for which third-order elastic constants (TOECS) are available (Verlinden 
et a1 1984, Swartz et a1 1975, Nagasawa et a1 1982). 

2. Notion of subrepresentation and the passage matrix 

Let us denote by {x} an arbitrary configuration of the solid ({x} represents the whole set 
of positions of all the particles) and by F ( { x } ,  T )  the corresponding Helmholtz free 
energy in the state ({x}, T )  (Helmholtz representation). In fact, it is well known that F 
does not depend on the positions {x} of all the particles. In particular, it can be seen 
(Wallace 1970) that, for a given reference configuration {x’} and whenever the deform- 
ation involved in the ‘movement’ {x‘} +. {x} is homogeneous or at most weakly inhomo- 
geneous, the free energy F is a function only of the LSPS v,,({x}) ( i ,  j = 1,2 ,3)  of the 
configuration, defined as 

where 
v ; ( { x } )  = WI({~))G,({~H - 4,l i , j = 1 , 2 , 3  (1) 

a: , ({x}> = ax& (2) 
and where we have used the superscript r to indicate the dependence on the configuration 
taken as reference?. Hence, for all {x} satisfying the above condition, it can be written 
that 

F ( M ,  T )  = Fr(v;({xl), T ) .  ( 3 )  
In such a way, we may construct an infinite number of free energy functions 

i In this paper, we always make use of the Einstein summation convention, implying a sum over repeated 
indices. Moreover, we use complete notation as well as Voigt notation for the Lagrangian parameters and all 
the properties deduced from these. 
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F,(qL,  T )  (one for each reference configuration r )  whose dependence on the respective 
q will be different for different values of r .  By analogy with the notion of representation 
in classical thermodynamics, we shall speak of the different subrepresentations SR r (of 
the Helmholtz representation). Thus, associated with the r SR there will be a LSP space 
(q') and a free-energy surface Fr(qr ,  T )  in such space. Particularly important for its 
extended use is the SR which we shall call r = 0 and define as that where the LSPS are 
referred to the equilibrium configuration {xo} at zero applied stress (undeformed state). 

It follows from equation (3) that the expression of all the properties of the solid in 
an arbitrary equilibrium state ({x}, T )  as functions of the parameters q' will lead once 
more to different results in each SR.  Thus, if P denotes any such property, we shall have 

P({x}, T )  = P r ( q r ( { x } ) ,  T ) .  (4) 

In particular, this is true for the stress 'vector' U and the SOEC matrix C'.  For a fixed 
temperature T ,  the values of these properties in a given configuration {x'}? are usually 
obtaiced as the gradient and the curvature matrix, respectively, of the free-energy 
density$ surface at the corresponding point q r ( { x f } ) :  

4 { x f ) ,  T )  = F r ( q r ( { x ' } ) j  T )  = ~ r ( T ) , f r ( q ~ ( { x ~ } ) 7  T )  

C({x'), T )  = F r ( q r ( { x f ) ) ,  T )  = p r ( T ) f r ( q r ( { x f } ) $  T )  

( 5 )  

(6) 

where f r ( q r ( { x f } ) ,  T )  and f r ( q r ( { x ' } ) ,  T )  are the gradient and the curvature matrix, 
respectively, of f r ( q ' ,  T )  (Helmholtz free energy per unit mass) at q' = q r ( { x f } )  and 
pr( T )  = p( {Y}, T )  is the volume density. 

It should be emphasized, however, that this is not true in all SRS. Indeed, Wallace 
(1970,1972) shows that, stated in our SR language, the expression in the r SR (whatever 
r )  of the equilibrium stress tensor in the state ({x'}, T )  is 

(aim(i) = aim ( { x f } ) )  and that this equation reduces to equation (5) when r = i, i.e. when 
the free-energy function used is precisely that which depends on the LSPS evaluated from 
the configuration ({x,}, T ) .  It follows then that only the form of the surface F,$ in the 
neighbourhood of the origin provides directly the properties of the solid in the state 
({x,}, T ) .  We shall call the corresponding SR the 'good' SR to study this state. In this SR,  
the SOEC matrix of the solid in the state ({XI}, T )  is directly equal to the curvature matrix 
of the corresponding surface F, whereas in an arbitrary s R  rit will be given by the equation 
(Wallace 1967) 

Cf,k/({x'>, T )  = C ; k / ( q r ( { x ' l ) ,  T )  

= P I  ( T)aL ( i ) a J n  (i)aLp (i)aiq ( i ) [a  2fr(q T) / (a  v Ln a v ~ ,  ) ]  1 r ( i X q I  Qr. 

(8) 

t In what follows, we shall distinguish the equilibrium configuration under study by the superscript i, whereas 
r will always refer to the arbitrary reference state. In particular, r may represent the same state i. 
$ In this section, F stands for a Helmholtz free-energy density (per  unit volume of a reference state). The 
reference state is taken as the state ({x'}, T )  when we deal with the r SR. 
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One can also write the above equations in matrix notation. Indeed, let us introduce the 
coefficients A ti$, defined by 

where r = {xr} and s = {xs} denote two arbitrary reference configurations. They have 
the symmetry properties 

and therefore they may be written in Voigt notation according to the relations 

A ti;) A ris) 
2A ti;) A ( r - s )  IK 

ifZ= 1 , .  . . , 6and  K = 1 , 2 , 3  

i f Z =  1 , .  . . , 6and  K = 4,5 ,6 .  
(11) 

These new coefficients define a 6 X 6 and in general non-symmetric matrix which we 
shall denote by A(r, s). In terms of this matrix, the relation between the LSPS of a given 
configuration {x} in two arbitrary SRS r and s can be written as 

q"{x>) = A(r, s)qr({x}) + q S ( { x ' ) )  V{X} (12) 

and then it may be called the 'passage matrix' from the r SR to the s SR; it describes the 
transformation to be applied to one LSP space to get the other and, consequently, the 
deformation relating both surfaces F, and F,. From the symmetry properties of the stress 
tensor and of the LSPS it then follows that both equation (7) and equation (8) can be 
written in terms of the 'passage matrix' A(i, r ) ,  leading to the relations 

u({x i} ,T)  = Pi(T)A(i, r).fr(qr({xi})T T )  

and 

(the superscript T denotes the transposition matrix operation). Consequently, the SOEC 
matrix of the solid in the state ( { x i } ,  T )  is obtained from the curvature matrix 
Fr(qr({xi}), T )  only after appropriate transformation via the passage matrix, which 
introduces also a dependence on the strain (from r to i). Note that equation (14), which 
is completely equivalent to equation ( 7 ) ,  is exact. As done in section 4, however, 
approximations are usually necessary to evaluate the matrix F, at qr({xi}). 

It is easy to verify that A(r, s) reduces to the identity matrix whenever r = s and then, 
when r = i, equations (13) and (14) read 

u ( { x i } ,  T )  = Pi (T) . f i (q f  = 0 ,  T )  

C({x'}, T )  = p ; (T ) f ; (q i  = 0 ,  T )  

(15) 

(16) 

in good agreement with the above-mentioned results. 
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In the following section, it will be seen how the use of the passage matrix not only 
simplifies the notation but also provides a simple test to determine whether or not all 
SRS are equivalent so far as the elastic stability of an arbitrary state is concerned. 

3. Elastic stability of an arbitrary equilibrium state; determination of the 'strain spinodal' 

Let us first consider the case of arbitrary configurational variables, denoted by the vector 
X = ( X I ,  . . . , X,) and assumed to be independent of the point (homogeneous system). 
Obviously, X = X({x}). The Helmholtz free energy is then F = F(X, 7'). Related to such 
variables X, we have a set of conjugated forces Y = ( Y 1 ,  . . . , Y,) which at equilibrium 
will be functions only of X and T and which represent the forces to be applied on the 
solid (by an external agency) in order to keep it at equilibrium in the configuration X 
and at temperature T.  More precisely, 

Yo = Yeq(X", T )  = F ( X o ,  T )  (17) 
where F(Xo, T )  is the gradient of the surface F ( X ,  7') (for a fixed temperature T )  at Xo. 

The condition for the equilibrium state ( X o ,  T )  to be elastically stable (at constant 
temperature and applied forces) is that the Gibbs free-energy functional surface 
G ( X ;  Yo, T )  (in the X-space) defined as 

G(X, T )  = F ( X ,  T )  - Yo * X (18) 
has a minimum at X o  (Yo and Tremaining constants). As is well known, this condition is 
equivalent to the positive definite character of the curvature matrix F(X, T )  of the 
(thermodynamic) Helmholtz free-energy surface F ( X ,  T )  (for a fixed T )  at X o :  

F(X, T )  = [V, * ( V , F ) T I ( X ,  T ) .  (19) 
So, if F (from now on called the stability matrix) is positive definite at a point X, the free- 
energy surface is convex in the neighbourhood of this point and the equilibrium state 
(X, T )  is stable. Otherwise, it will be instable. Between both extreme cases, there are a 
set of pointsX where Fhas an inflection point (along one or probably various directions, 
called instability directions). The whole set of these points will constitute the 'elastic 
configurational spinodal' which will be obtained as the solution of 

det[F(X, T ) ]  = 0. (20) 
This equation divides X-space into different stability domains separated by instability 
regions. Inside each of the stability domains there will be a minimum of Fcorresponding 
to a stable (or metastable) phase at zero applied stress; equation (20) then determines 
the limiting stability surface (obviously a function of the temperature T )  for each of such 
phases. 

Let us now contemplate two particular cases of the above general formulation, 
corresponding to two sets of configurational variables X essentially different in nature. 

In the first case (Milstein 1971), the variables X are taken to be the variables ai 
(i = 1, . . . , 6) that describe the unit cell of the solid. Furthermore, it is assumed that 
T = 0 KsothattheinteratomicpotentialenergyE(a)playsheretheroleoftheHelmholtz 
free energy F ( X ,  7'). The general equilibrium and stability conditions formulated above 
then reduce to those established by Milstein (equations (2) and (6), (7) in his paper), 
his F standing for our Y and his matrix B for our stability matrix F. In this case, we have 
just one set of parametersa, surface E(a)  describes properly all the states and the 'elastic 
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configurational spinodal’ is directly obtained as the solution of equation (20) when 
F(X, T )  is substituted by E(a) = B(a). So, Milstein studies elastic stability along a 
particular path in the a-space by looking for inflection points on the surface E(a) .  

Now, let us consider the thermodynamical approach in terms of the LSP q. As in 
section 2, F now stands for a free-energy density. The conjugated forces are then the 
stress vector components a,and the stability matrix F is the SOEC matrix C. The condition 
for the state ({x}, T )  to be elastically stable therefore reduces to the positive character 
of C. As pointed out in section 2, this matrix in the arbitrary r SR is not equal to F,, but 
it is related to this matrix after appropriate transformation, as stated in equation (14). 
Thus, the true stability matrix in the 0 SR, for example, which we shall denote by 
F b ( q O ,  T ) ,  ist 

Fb(~o({x’>) ,  T ,  = 0)F0(~0({x’>)7 T ) A ( i 7  o>T (21) 

and so the ‘elastic configurational spinodal’ in the qO-space (usually called the ‘strain 
spinodal’) is not obtained as the solution of equation (20) with F(X, T )  + Fo(qo, T )  but 
as the solution of 

det[Fb(q, T ) ]  = det[A(i, O)Fo(qo, T)A(i ,  O)T]  = 0 (22) 
where the matrix A ,  like F,, is a function of the point in the qo-space. 

Obviously, the difference between FA and Fo is unimportant, so far as the stability of 
a state is concerned, if the eigenvalues of both matrices are equal. From equation (22), 
the condition for this to be true reduces to the orthogonality property of the passage 
matrix A(i, 0)  for all configurations {x’}, i.e. 

A(i, O)TA(i, 0 )  = A(i, O)A(i, O)T = I (23) 
where I is the 6 x 6 identity matrix. In this case, the free-energy functionsf, and f o  would 
be simply related by a translation to a new origin followed by a rotation (see equation 
(12)). It may be verified in a simple case, however, that condition (23) is not always 
fulfilled, showing that the surface f, must actually be deformed to obtain the new surface 

We conclude that, to study the elastic stability of a state in this approach, the ‘good’ 
SR must be used. Otherwise, if one works in a fixed but arbitrary SR, the corresponding 
passage matrix must be taken into account, relating the stability matrix to the curvature 
matrix of the corresponding free-energy function. In particular, the presence of this 
matrix makes it possible to have an inflection point on the surface F o ( q O ,  7‘) which, 
however, does not represent an elastic instability of the solid. 

In the next section, these results are applied to the localized soft-mode theory (Clapp 
1973) and we discuss the inaccuracy of Clapp’s method to calculate the strain spinodal. 

fi. 

4. Effect on the localized soft-mode theory 

The localized soft-mode theory, first introduced by Clapp (1973), is a model which 
intends to render negligible the shape change contribution to the nucleation barrier in 
a thermoelastic martensitic transformation. The essential idea of the model lies in the 
fact that the elastic stability of a solid in a given state may be strongly influenced by the 

t Note that the factor p , (  T)/p,(  T )  will be important only when one calculates explicitly the values of the 
elastic constants. 
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existence of internal strains (such as internal defects or surfaces). Moreover, Clapp 
postulates that the 'strain spinodal' in the ?'-space (0 SR) is sufficiently close to the origin 
to make the existence of critical strains in the solid (beyond which it would become 
instable) energetically plausible. In order to verify this hypothesis, Clapp calculates the 
SOECs for the states ({x}, T )  lying near the origin qo = 0 in terms of the strain qo({x} )  
and the TOECS in the undeformed state and then proceeds to study the solutions of the 
equation 

det[Co(qo, T ) ]  = 0 (24) 

which indeed determines the strain spinodal in this space. 
Nevertheless, Clapp and subsequent workers (GuCnin and Gobin 1982a, b, Ver- 

linden et a1 1984, Verlinden and Delaey 1986) further assume apriori that the Helmholtz 
free-energy surface F o ( q o ,  T )  in the 0 SR directly describes the character of all the states 
in the same way as the surface E(a) of Milstein's treatment. Thus, the SOEC matrix of 
the solid in an arbitrary state (qo = n, T )  is taken as the curvature matrix Fo(qo, T )  at 
this point: 

CO(?' = n, T )  = Fo(qo = n, T )  = po(T) fo(qo = n, T ) .  (25)  

As shown in the preceding section, however, this is true only when n = 0, the correct 
general expression being that obtained from equation (14). This leads the above-men- 
tioned workers to a wrong strain renormalization of the SOECS and consequently also to 
a wrong stability criterion. 

In order to be explicit about the effect of the inaccurate treatment followed up 
to now, we have reconsidered both points, especially the stability criterion since it 
determines whether or not the model is plausible. Of course, the value of the critical 
strain depends on the direction in qO-space that one takes. We have studied two cases: 
the case of a Bain strain, which according to Clapp (1973) turns out to be the most 
unstable type of strain, and a (Oll)[Oil] shear proposed by GuCnin (1979) as the strain 
playing the most important role in the local softening of the solid when it undergoes a 
thermoelastic martensitic transformation. Here we shall develop only the latter case. 

Let us then return to equation (14), with r = 0, and make i = 1 so that {x'} will denote 
the strained state. From equations (9) and ( l l ) ,  it follows that the passage matrix for a 
(Oll)[OTl] shear is given by 

A(1,O) = A(P) = 

where p = P ' / 2  and P' denotes the shear amplitude. Now, we assume that the strain 
spinodal is indeed located near the origin so that all calculations are done to first order 
in the deformation parameter. Then, for a sufficiently small P ,  this matrix becomes 
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O l  0 1: :-2p 0 -2p 0 

0 0 0  

0 1 + g  P : I  1 - P  ! 0 0  0 0 -P 

0 0  1 + 2 p  2p 0 

O P  -P 1 0  
0 0  0 

A(P) = 

Furthermore, in order to evaluate the matrix Fo at qo({xl}), we assume, following 
Clapp, that Fo(qo,  T )  can be represented by a Taylor expansion in a neighbourhood of 
the origin and then Fo(p, T )  is obtained in terms of the SOECS and TOECS of the solid in 
the undeformed state, higher-order terms being neglected because they give rise to 
second-order contributions in p. In this way, assuming that the crystal is cubic in the 
undeformed state, Guenin (1979) obtains the following coefficients for this matrix 
( p  = -&/2): 

Fyl = Cyl 

F y 2  = F!l = c% + (E/2)(C?12 - 

FY3 = F!l = cy2 - (E/2)(CY12 - G 2 3 >  

F022 = G I  + (&/2)(C?ll - CY,,) 

F!3 = cy1 - (&/2)(Crlll - C?Id 

FO -FO -CO 
23 - 32 - 12 

F &  = C& 

F!5 = ci4 + (&/2)(C?44 - c y 6 6 1  

F i 6  = cy4 - (E/2)(C?44 - c?66) 
and all remaining coefficients equal to zero 

which define a matrix with orthorhombic symmetry. In Clapp's method, this matrix 
would already be the SOEC matrix of the solid after the shear strain and so the strain 
renormalization is attributed to anharmonic terms. The critical strain E, would then be 
obtained as a solution of equation (24), yielding as the most critical condition (Guenin 
1979) 

(Cy, - C?,)'(C:, + 2Cy2) + (&:/4)[4abC?, - a2Cy1 - 2(Cy1 + Cy2)b2] = 0 (29) 
where a = Cyl1 - Cylz and b = Cyl2 - Cy23. 

Let us now consider separately the strain renormalization of the SOECS and the 
stability criterion as given by the present method. 

4.1. Strain renormalization of the second-order elastic constants 

From the equation of continuity (Wallace 1970) we have 

Pl(T)/PO(T) = l /detb0({x'Hl = 1 (30) 
which corresponds to the zero volume change of the shear. Then, to first order in E, use 
of equations (14), (27) and (28) leads to the following elastic constants: 
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C34 = C43 = -(~/2)(Cy1 - C?,)(A - 1) 

c44 = c& 

and all remaining coefficients equal to zero 

where A is the anisotropy constant of the solid in the initial undeformed state. 
Comparison between equations (28) and (31) shows immediately two differences. 

First, the SOEC matrix of the solid in the final strained state as it is defined by equation 
(31) has no special symmetry since the constants C24 and C34 are not zerot. This is a 
more reliable result as indeed the strained lattice will have no symmetry elements (except 
possibly for special values of E ) .  Second, and most important, contrary to Clapp’s results, 
where strain renormalization (as temperature renormalization) is attributed uniquely 
to anharmonic terms, the present treatment yields an additional harmonic contribution. 
It follows then that, even for an ideally harmonic solid, its elastic properties change 
when it is submitted to external stresses. Such a result is in fact well understood if one 
takes into account that, contrary to temperature-induced deformations (which on the 
average are zero in the harmonic approximation), strains induced by an external stress 
involve changes in the atomic equilibrium positions and hence changes also in its elastic 
properties, although the force constants remain unchanged$. This situation becomes 
extreme for the C24 and C34 constants, whose strain dependence is entirely due to the 
harmonic contribution (to first order in E). 

To appreciate properly the influence of the harmonic terms, numerical values for 
three different alloys are presented in table 1 as calculated from the SOECS and TOECS 
found in the literature (Verlinden et a1 1984, Swartz et a1 1975, Nagasawa et a1 1982). In 

t It is worth noting here that the value of these constants as calculated from equation (8.20) of Wallace’s 
(1970) paper are zero. In fact, this equation is obtained as a first approximation of the general equation (8.11) 
only for symmetric strains. 
$ In fact, there exists also a possible contribution to this strain renormalization coming from a change in the 
atomic force constants, even in the harmonic approximation. The existence of such a change can be easily 
understood if one takes into account the change in the crystal symmetry of the solid when it is deformed (for 
the restrictions that such symmetry imposes on the atomic force constants, see Briiesch (1982)). 
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Table 1. Strain renormalization of the second-order elastic constants for (01 l)[Oil] shear 
(T=293K).  

SEOC (10" Pa) 

Alloy Present method Clapp's method 

Cu-Zn 

~ 

Cu-Zn- AI Cli = 1.164 
C12 = 1.023 + 0.3238 
CI3 = 1.023 - 0.3238 
CZ2 = 1.164 - 2.7728 

C2, = 0.7738 
C23 = 1.023 

C33 1.164 + 2.7728 
Cu = -0.7738 
C, = 0.844 
C55 = 0.844 - 0.8448 
C, = 0.844 + 0.8448 

C,, = 1.241 
C,, = 1.042 + 1.0028 
CI3 = 1.042 - 1.0028 
C,, = 1.241 - 1.4038 
C23 = 1.042 
C,, = 0.709s 
C33 = 1.241 + 1.4038 
C34 = -0.7098 
C, = 0.809 

C, = 0.809 + 0.7548 
C55 = 0.809 - 0.7548 

Cu-Au-Zn C,, = 1.206 
Cl2 = 1.077 - 0.2378 
CI3 = 1.077 + 0.2378 
C22 = 1.206 - 2.2338 
C,, = 1.077 
C,, = 0.5598 
C3, = 1.206 + 2.2338 
C3, = -0.5598 
C M  = 0.624 
C55 = 0.624 - 0.9448 
C, = 0.624 + 0.9448 

C,, = 1.164 

CI3 = 1.023 + 0.78 
CZ2 = 1.164 - 5.18 
C,, = 1.023 

Cl2 = 1.023 - 0.78 

c,, = 0 

c,, = 0 
C33 1.164 + 5.18 

C, = 0.844 
C55 = 0.844 
CM = 0.844 

Cll  = 1.241 
CI2 = 1.042 - 0.048 
C13 = 1.042 + 0.048 
C2, = 1.241 - 3.8858 
C,, = 1.042 
c2, = 0 

c,, = 0 
C, = 0.809 
C,, = 0.809 + 0.0558 

C33 = 1.241 + 3.8858 

C, = 0.809 - 0.0558 

C,, = 1.206 
C12 = 1.077 - 0.848 
C,, = 1.077 + 0.848 
C22 = 1.206 - 4.6458 
C2,'= 1.077 
c,, = 0 

cy = 0 
C33 = 1.206 + 4.6458 

C, = 0.624 
C5, = 0.624 - 0.328 
C, = 0.624 + 0.328 

particular, the change in sign in the strain-dependent term for some elastic constants 
should be noted. Analogous results for the Bain distortion are given in table 2. 

4.2 .  Stability criteria and determination of the critical strain 
From equations (22) and (31), one finds the following condition for the critical shear 
strain E,: 

(CI  = (CYl - C$)2(Cy1 + 2Cy2) + (~:/4) [4abCy2 - a2CYl 

where a and b are the above-defined constants and A is given by 
- 2(Cy1 + Cy2)b2 - A(Cyl, Cy2, A,  a ,  b ) ]  = 0 

+ (2Cy1)* + 2CY1CY2 - (Cy2) ,  + a(CYl + Cy2) - bC$)] .  

(32) 

A = 8(Cy1 - Cy,)[(1/2A)(1 - A)2(Ci1 - C?2)(Cy1 + 2CQ 
(33) 
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Table 2. Strain renormalization of the second-order elastic constants for Bain distortion 
(T=293K).  

SEOC (10" Pa) 

Alloy Present method Clapp's method 

Cu-Zn 

Cu-Zn-A1 CI1 = 1.164 + 2.7727 
Clz = 1.023 - 0.6467 
Cl3 = 1.023 + 0.3235 
C22 1.164 + 2.7727 
C23 = 1.023 + 0.3237 
CZ4 = 0 
C33 = 1.164 - 5.5445 
c,, = 0 
C+j = 0.844 + 0.8447 
C55 = 0.844 + 0.8447 
C, = 0.844 - 1 .688~  

C,, = 1.241 + 1.4037 
C12 = 1.042 + 2.0045 
C13 = 1.042 + 1.0025 
C22 = 1.241 + 1.4037 
C23 = 1.042 + 1.0027 
C24 = 0 
C33 = 1.241 - 2.8067 
c3, = 0 

C55 = 0.809 + 0.7545 
C, = 0.809 - 1.5085 

C, = 0.809 + 0.7547 

Cu-Au-Zn Cl1 = 1.206 + 2.2337 
C12 = 1.077 - 0.4747 
CI3 = 1.077 + 0.2377 
C22 = 1.206 + 2.2337 
C23 = 1.077 + 0 . 2 3 7 ~  
CZ4 = 0 
C33 = 1.206 - 4.4667 
c3, = 0 
C+j = 0.624 + 0.9445 
C55 = 0.624 + 0.9442 
C, = 0.624 - 1.8897 

Cll = 1.164 + 5.15 
C12 = 1.023 + 1.45 
C13 = 1.023 - 0.7s 
C22 = 1.164 + 5.15 
C23 = 1.023 - 0.77 
c2, = 0 

c34 = 0 
C+j = 0.844 
C55 = 0.844 

C33 = 1.164 - 10.27 

C, = 0.844 

C11 = 1.241 + 3.8857 
CI2 = 1.042 + 0.085 
Cl3 = 1.042 - 0 . 0 4 ~  
C22 = 1.241 + 3.885~ 
C23 = 1.042 - 0.047 
C24 = 0 
C33 = 1.241 - 7.775 
C3=O 
C, = 0.809 - 0.0557 
C55 = 0.809 - 0.0557 
C, = 0.809 + 0.117 

C,, = 1.206 + 4 .645~  
C12 = 1.077 + 1.687 
CI, = 1.077 - 0 . 8 4 ~  
C22 = 1.206 + 4.645~ 
C23 = 1.077 - 0.845 
c,, = 0 

c3, = 0 
CA3 = 1.206 - 9.297 

C+j = 0.624 + 0.327 
C55 = 0.624 + 0 . 3 2 ~  
C, = 0.624 - 0.647 

Comparison between equations (29) and (32) shows that both stability conditions are 
equal except for the term A arising from the additional harmonic contribution. As shown 
in equation (33), this new term is proportional to Cy, - Cy2 and therefore the critical 
strains obtained in both methods will be similar as the difference between the elastic 
constants is negligible. In the case of a P-Cu-Zn-A1 alloy, experimental results (GuCnin 
1979, Verlinden et a1 1984) prove that this difference is small, further decreasing as the 
temperature decreases, s% that the critical strains provided by both Clapp's method (ecZ) 
and the present method (ec1) will be nearly equal. This is illustrated in figure l ( a ) ,  where 
we have plotted both stability conditions (equations (29) and (32), respectively) and 
also the stability condition obtained when only harmonic terms are taken into account 
(ecg). The corresponding plot for the Bain distortion is given in figure l(b).  In figure 2 
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I I 0.10 
(a )  0.10 

Figbre 1. /Cl as a function of the strain (a) for a (Oll)[Oil] shear and (6) for a Bain distortion 
in a /3-Cu-Zn-AI alloy at T = 293 K: -, present calculations; ---, Clapp’s results; . . . ., 
harmonic contribution. 

0.070 

P’ 

Figure 2. Temperature dependence of the critical 
strains E,, (0) and E,* (W) for the 0-Cu-Zn-AI I alloy. Extrapolated values at the martensitic 

I transformation temperature M, = 158 K are also 
*0° T (K) 3w shown. 

the temperature dependence of the critical strains E , ~  and E , ~  is shown for (011)[0il] 
shear in the same alloy, which transforms martensitically at a temperature M, = 158 K 
(Verlinden et af 1984). The extrapolated value of E ,  at this temperature differs in the two 
methods by 10% (at room temperature, this difference is 15%). Similar effects have 
been obtained for a Cu-Zn and a Au-Cu-Zn alloy. So, in the case of (Oll)[Oil] shear, 
increments (at room temperature) of 1 5 1 8 %  in the critical strain are found relative to 
the values obtained using Clapp’s method. Furthermore, the critical strain E , ~  when only 
harmonic terms are taken into account increases greatly too ( E , ~  = 0.2). 

We thus draw the following conclusions. 

(i) The critical strain remains small enough to render plausible the localized soft- 

(ii) The effect of the additional harmonic contribution is to increase the elastic 

(iii) According to Clapp’s postulate, it is the anharmonic contribution which strongly 

mode theory (thus, E , ~  = k0.07 for shear strain in Cu-Zn-A1 alloy). 

stability of the solid ( E , ~  > E,*) .  

reduces the elastic stability of the solid ( E , ~  = 3 4 .  
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Finally, it should be pointed out that the above results have been obtained for some 
alloys and particular types of strain. In such cases, we have verified that Clapp’s method, 
although inaccurate, leads to well approximated results for the stability criteria (in spite 
of the fact that the effect on the strain renormalization of the SOECS is much more 
noticeable). There is no evidence, however, for this to be always true. 
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